

# **IMMUNOPRECIPITATION (IP)**

### **Overview and Technical Tips**





# CONTENTS

- **3–7** Introduction
  - 8 Factors Influencing IP
- 9–12 General Protocol
- **13–17** Modifications Of IP Protocols
- 18–19 Troubleshooting
  - **20** Contact Us





# INTRODUCTION

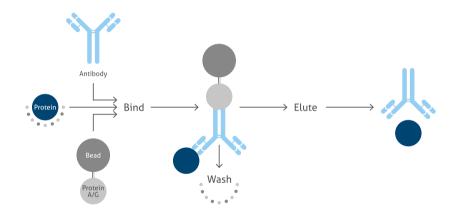
- Immunoprecipitation (IP) is a precipitation technique.
- IP is a technique used to purify and enrich the protein-of-interest out of a protein mixture.
- IP isolated proteins can then further be analysed by Western blotting, ELISA, and mass spectrometry.
- IP helps to identify: presence, up/down regulation, size, stability, and interactions of the protein-of-interest.





# APPLICATIONS

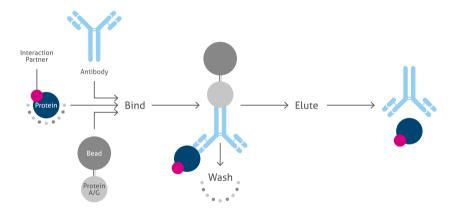



- Isolation and detection of protein-of-interest
- Enrichment of low expressed proteins
- Investigation of proteinprotein interactions
- Identification of proteins as part of a protein complex





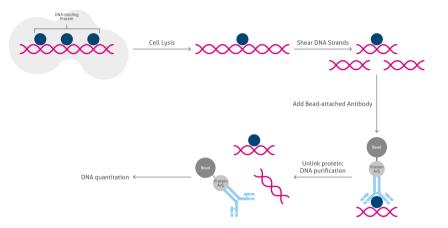
# IMMUNOPRECIPITATION (IP)


- IP is based on a solid phase (bead) that contains a binding protein.
- IP requires a specific antibody to purify a single antigen.
- The sample containing the proteinof-interest is incubated with the beads and antibody.
- The antibody binds to the protein and bead.
- The beads get washed.
- The protein is eluted.





# CO-IMMUNOPRECIPITATION (Co-IP)


- Co-IP contains similar steps to that of an IP experiment.
- A specific antibody and a solid phase (bead) is needed.
- Co-IPs do not just isolate one proteinof-interest but also its binding partners (proteins, ligands, co-factors, signaling, molecules etc).
- When optimizing a Co-IP experiment, additional factors have to be considered.



### 7 Proteintech<sup>™</sup> Antibodies | ELISA kits | Proteins

# CHROMATIN IMMUNOPRECIPITATION (ChIP)

- ChIP is a powerful tool used in epigenetics.
- ChIP helps to detect special protein-DNA interactions.
- ChIP monitors transcriptional regulation via modifications of histones.
- The results are further analysed by qPCR.
- A ChIP is more complex then a simple IP.
- Main steps: Crosslinking, cell lysis, chromatin preparation, IP, reverse crosslinking, DNA clearing, DNA quantitation.





### FACTORS INFLUENCING IP

- Performing an IP experiment is relatively simple.
- Variable factors depend on the protein-of-interest and the antibody.
- The core of an IP experiment is the purification of a specific protein with specific binding to an antibody.

| Main Factors                  | Possible Solution        |
|-------------------------------|--------------------------|
| Wash, elution, binding buffer | Composition, volume      |
| Type of solid support         | Physical characteristics |
| Antibody                      | Amount, specificity      |
| Pre-clearing of lysate        | Non-specific binding     |



### Sample Preparation

- Prepare lysate from cells according to your routine protocol.
- Commonly used amounts: 0.3–0.5 ml lysate containing 1–4 mg total protein.
- Use protease inhibitors when working with RIPA lysate buffer.

### Tips

- High concentrations of detergent interfere immunoprecipitation. Try to lysis cells with a small volume RIPA and then dilute the lysates with PBS to the final volume.
- Use sufficient lysates for the first trial. Typically 1–3 mg total protein is needed for each IP.
- Concentration of proteinase inhibitor should be 1.5–2 times of that for Western blotting lysates.



### Lysate Pre-cleaning

- Resuspend Protein A or G sepharose beads slurry by gentle vortex, then add 50 µl of 50% beads slurry per 0.5–1 mg of cell lysate.
- Incubate at 4°C for 30 min on a rotator.
- Centrifuge at 1000 rpm for 3 min at 4°C and transfer the supernatant to a fresh tube.

### Tip

- Tissues with abundant IgG are suggested to be pre-cleared with Protein A or G sepharose.



### Immunoprecipitation

- Add appropriate amount of primary antibody to the whole (or pre-cleared) lysate. Optimal antibody concentration should be determined by titration. Gently rock the mixture at 4°C for 2–4 h or overnight. Set up a negative control with control lgG corresponding to the primary antibody source.
- Add Protein A or G sepharose beads slurry to capture the immunocomplex. Gently rock the mixture at 4°C for 1–4 h.
- Centrifuge the mixture at 500–1000 rpm for 30 s at 4°C and discard the supernatant.
- Wash the beads 3–4 times with 1 ml RIPA lysis buffer or 1X PBS with 0.2% Tween 20 (less stringent), centrifuge and discard the supernatant.

#### Tip

 Do not use too much Protein A or G sepharose. Protein A or G will bind IgG in Western blotting and cause intense non-specific bands.

www.ptglab.com



#### Elution

- Elute the pellet twice with 40 µl 0.10 M Glycine, 0.05M Tris-HCl (pH 1.5–2.5) elution buffer containing 500 mM NaCl. Pool elutions and neutralize by Alkali neutralization Buffer or 10X PBS buffer (pH 6.8–7.2) to a final of 1X.
- Add 5X SDS sample buffer to the elutions. Heat at 95°C for 5 min.

### Tip

- Increasing the salt concentration in elution buffer will help to elute protein.



### MODIFICATIONS OF IP PROTOCOLS

### **Binding Proteins**

- Protein A, Protein G or Protein A/G are used as immunoglobulins binding proteins in IPs.
- Protein A/G binds to all subclasses of immunoglobulins.
- Protein A or Protein G bind to multiple subclasses of immunoglobulins.

| Binding capacity of immunoglobulins to | Species | Subclass | Protein A | Protein G | Protein A/G |
|----------------------------------------|---------|----------|-----------|-----------|-------------|
| Protein A and G                        | Human   | lgG1     | +++       | +++       | +++         |
|                                        | Human   | lgG2     | +++       | +++       | +++         |
|                                        | Human   | IgM      | +         | -         | +           |
|                                        | Mouse   | lgG1     | +         | ++        | ++          |
|                                        | Mouse   | lgG2a    | +++       | +++       | +++         |
|                                        | Mouse   | lgG2b    | +++       | +++       | +++         |
|                                        | Rat     | lgG1     | +         | ++        | ++          |



### **BUFFER OPTIMIZATION**

### **Binding Buffer**

- Most bindings to protein A or G work well under physiological conditions.
- Some bindings to protein A or G can be enhanced by adapting the pH value (e.g. Protein G binds best to IgG at pH 5.0).

### **Washing Buffer**

- The washing step should not interfere with the desired protein bindings.
- The washing step should remove all unwanted protein bindings.
- If the observed background signal is too high in an IP experiment, buffer type and additives can be varied. Commonly used buffers are: PBS or TBS.
- Reagents: NP40, Triton-X, CHAPS.
- Additives: DTT (reduction of disulfid bonds).
- Increased ionic strength reduces non-specific electrostatic interactions



### **BUFFER OPTIMIZATION**

### **Elution Buffer**

- If the IP sample is further used for Western blotting, the sample can be directly diluted in SDS-PAGE sample buffer containing reducing agents.
- Most common used elution buffer: glycine 0.1M at pH 2.5-3.5.
- If the antibody-protein binding does not dissociate or if the protein gets denaturated the pH can be changed.





### PRE CLEARING OF SAMPLES

- Pre-clearing is a carried out before the actual IP experiment.
- Pre-clearing of the sample helps to get rid of unwanted proteins to the solid support.
- Therefore, the sample gets incubated with the plain beads.
- Non-specific components of the sample that bind to the solid phase will be removed.



# CONTROLS

Isotype Control

- An isotype control helps to understand the specificity of the obtained signal.
- The isotype control should always be run in parallel to the sample.

### **Negative Control**

 Plain beads (without antibody) can be used as negative controls. They help to distinguish between specific and nonspecific bindings.



# TROUBLESHOOTING

### **High Background**

| lssue                                       | Possible Solution                                            |
|---------------------------------------------|--------------------------------------------------------------|
| Insufficient washing.                       | Increase washing volume/time.                                |
| Non-specific antibody.                      | Pre-test the antibody for its specifity.                     |
| Antibody amount.                            | A too high amount of antibody leads to non-specific binding. |
| Too high amount of sample.                  | Decrease the amount of cells/lysate.                         |
| Proteins bind non-specific to the antibody. | Reduce sample amount, pre-clear samples.                     |
| Antigen degradations.                       | Add fresh protease inhibitors.                               |



# TROUBLESHOOTING

### **Insufficient Elution**

| lssue                                                | Possible Solution                                                                       |  |  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| Wrong lysis buffer.                                  | Change lysis buffer.                                                                    |  |  |
| No antibody binding to beads.                        | Make sure, isotype specific beads were used.                                            |  |  |
| Protein of interest cannot be eluted from the beads. | Change elution buffer (components, pH etc).                                             |  |  |
| Insufficient antibody amount for binding properly.   | Too low antibody amount, titrate antibody concentration.                                |  |  |
| Protein-of-interest is low expressed.                | Increase amount of lysis volume. Pre-clear the sample to decrease non-specific binding. |  |  |



# CONTACT US

**Proteintech Group** US Head Office proteintech@ptglab.com

**Proteintech Europe** United Kingdom europe@ptglab.com

**Proteintech** *China Office*  service@ptglab.com

Support

Available 24 hours via Live Chat and 9–5 (CDT) via phone.

Please visit us at www.ptglab.com for more information about our antibodies and technical tips.

